Bonding, Lewis Structures

Z Ch 12.15, 13

"There are therefore Agents in Nature able to make the Particles of Bodies stick together by very strong Attractions. And it is the Business of Experimental Philosophy to find them out." Isaac Newton, 1717

"Two atoms may conform to the rule of eight, or the octet rule, not only by the transfer of electrons from one atom to another, but also by sharing one or more pairs of electrons. These electrons which are held in common by two atoms may be considered to belong to the outer shells of both atoms." Gilbert Newton Lewis, 1916

"We shall say that there is a chemical bond between two atoms or groups of atoms in case that the forces acting between them are such as to lead to the formation of an aggregate with sufficient stability to make it convenient for the chemist to consider it as an independent molecular species."

(Nobel Prize in Chemistry in 1954 "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances" and Nobel Peace Prize in 1962.)

Quiz on Friday

Seven SIMPLE BONDING CONCEPTS

13.3 – Bond Polarity and Dipole Moments , 6) dipole moment
7) electronegativity and atomic size effects (EX 1 and 2)

REVIEW FROM MONDAY

Electronic Geometry: Octahedral (SN=6)

SIX ELECTRON PAIRS Electron-pair geometry = octahedral

Lewis Structures and VSEPR

Lewis Structures and VSEPR (Beyond Octets)

5) VSE (Valence Shell Expansion)

RnCl₂

VAL = 8 + 2(7) = 22 STAB = 3(8) = 24 BOND = 24 - 22 = 2/2 = 1 BP LONE = 22 - 2 = 20/2 = 10 LP 2 Rn - Cl bonds => VSE => 2 BP, 9 LP (6 on Cl) XeOF₄

VAL = 8 + 6 + 4(7) = 42 STAB = 6(8) = 48 BOND = 48 - 42 = 6/2 = 3 BP LONE = 42 - 6 = 36/2 = 18 LP need 5 bonds => 5 BP => 2 VSE expansions 5 BP, 16 LP (15 on O,F)

square pyramidal

Seven SIMPLE BONDING CONCEPTS

- 1) Lewis structures
- 2) Resonance
- 3) Formal charge
- 4) Valence Shell Electron Pair Repulsion (VSEPR) Theory
- 5) Valence shell expansion (VSE)
- 6) Bond and molecular polarity
- 7) Effect of electronegativity and atomic size on bond angles

Molecular Polarity

For a molecule to be polar it must

- 1. have a polar bond (bond between atoms of different electronegativities)
- 2. bond polarities must add to give a net polarity (dipole) for the molecule
- 3. a dipole moment is a vector

 $\boldsymbol{\mu} = \boldsymbol{\Sigma} \ \boldsymbol{Q}_{i} \boldsymbol{r}_{i}$

Consider HI: I is more electronegative than H so the dipole points from H (δ +) to I (δ -)

								Н		· · ·							
1A	2A							2.2			·	3A	4A	5A	6A	7A	•
Li	Be]										В	С	N	0	F	
1.0	1.6											2.0	2.5	3.0	3.5	4.0	elec
Na	Mg	20						8B				AL	Si	Р	S	CL	tror
0.9	1.3	3B	4B	5B	6B	7B				1B	2B	1.6	1.9	2.2	2.6	3.2	nega
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	ng
0.8	1.0	1.4	1.5	1.6	1.7	1.5	1.8	1.9	1.9	1.9	1.6	1.8	2.0	2.2	2.6	3.0	LA LA
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	
0.8	1.0	1.2	1.3	1.6	2.2	1.9	2.2	2.3	2.2	1.9	1.7	1.8	2.0	1.9	2.1	2.7	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.3	2.5	2.0	1.6	2.3	2.0	2.0	2.2	

In water each O – H bond is polar with the dipole pointing from H (δ +) to O (δ -). Then the two bond dipoles need to be vectorially added to give the net dipole for the molecule

Molecular Polarity

ammonia, NH₃

sulfur tetrafluoride, SF₄

Molecule with Polar Bonds May Not be Polar

The addition of bond dipoles can be extended to more than two. Consider BF₃

- 1. draw the Lewis structure
- 2. determine the electronic geometry and then the molecular geometry (determines bond dipoles)
- 3. sketch the structure (three dimensional if needed
- 4. vectorially add the bond dipoles

Molecule with Polar Bonds May Not be Polar

Molecular Polarity for Organic Molecules

 $\begin{array}{c} \delta^{+} & \delta^{+} \\ H & H \\ C & C \\ \hline C \\ \delta^{-} \end{array} \quad \begin{array}{c} \delta^{+} \\ H \\ C & C \\ \delta^{-} \end{array}$ A, polar, displacement of bonding electrons to one side of the molecule

Electronegativity and Atomic Size Effects

In a bond between elements of differing electronegativity, the more electronegative element pulls the bonding pair electrons more strongly to itself. If a central atom is surrounded by atoms of large electronegativity, the bonding electrons are drawn away from the central atom, reducing the repulsive effect of these electrons and leading to smaller bond angles. On the other hand, if the central atom has a large electronegativity, bonding electrons are pulled toward it, increasing electronic repulsions and a larger bond angle results.

In comparing a bond containing a larger atom to one containing a smaller atom, the **bond with the larger atom naturally has its bonding pair of electrons further removed** from it just due to its size. So a molecule with a large central atom would tend to have smaller bond angles than a smaller central atom.

Electronegativity and Atomic Size Effects

EX 1. Determine the stronger acid in the following pairs and explain why.

- more lone O atoms
- b) CH₄ or NH₃ N more electronegative
- c) $H_2AsO_4^-$ or $HAsO_4^{2-}$

a) H_3PO_3 or H_3PO_4

easier to remove H+ from singly charged anion

d) HIO or HCIO CI more electronegative

e) H_2 Se or H_2 Te

Te larger

Absorption and Emission of Ultraviolet and Visible Radiation

color wheel

hydrocarbons

Infrared Emission from Iris Nebula

Basic Theory

To a) absorb or b) emit a photon of electromagnetic radiation the sample must exhibit periodic motion whose frequency matches that of the absorbed radiation.

 $\Delta E_{\text{sample}} = E_{\text{photon}} = hv = hc/\lambda$

Basic Experiment (black box lab exp)

transmittance	absorbance	Beer's Law
$T = \frac{P}{P_0}$	$A = \log\left(\frac{P_0}{P}\right) = -\log T$	$A = \varepsilon bc$

1A																	8A
(1)																	(18)
1																	2
H	2A											3A	4A	5A	6A	7A	He
1.008	(2)	_										(13)	(14)	(15)	(16)	(17)	4.0026
3	4											5	6	7	8	9	10
Li	Be											B	C	Ν	0	F	Ne
6.94	9.0122											10.81	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B		_ 8B _		1B	2B	Al	Si	Р	S	Cl	Ar
22.990	24.305	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982	28.085	.30.974	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.867	50.942	51.996	54.938	55.85	58.933	58.693	63.55	65.4	69.723	72.63	74.922	78.97	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468	87.62	88.906	91.22	92.906	95.95	(97/8)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.5	180.95	183.84	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc			Og
(223)	(226)	(227)	(267)	(268)	(269)	(2/1)	(277)	(276/7)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
anthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	(145)	150.4	151.96	157.3	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinides	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

La